Secretory and inductive properties of Drosophila wingless protein in Xenopus oocytes and embryos.

نویسندگان

  • A Chakrabarti
  • G Matthews
  • A Colman
  • L Dale
چکیده

Like its vertebrate homologues, Xenopus wnt-8 and murine wnt-1, we find that Drosophila wingless (wg) protein causes axis duplication when overexpressed in embryos of Xenopus laevis after mRNA injection. In many cases, the secondary axes contain eyes and cement glands, which reflect the induction of the most dorsoanterior mesodermal type, prechordal mesoderm. We show that the extent of axis duplication is dependent on the embryonic site of expression, with ventral expression leading to a more posterior point of axis bifurcation. The observed duplications are due to de novo generation of new axes as shown by rescue of UV-irradiated embryos. The true dorsal mesoderm-inducing properties of wg protein are indicated by its ability to generate extensive duplications after mRNA injection into D-tier cells of 32-cell embryos. As revealed by lineage mapping, the majority of these D cell progeny populate the endoderm; injections into animal blastomeres at this stage are far less effective in inducing secondary axes. However, when expressed in isolated animal cap explants, wg protein induces only ventral mesoderm, unless basic fibroblast growth factor is added, whereupon induction of muscle and occasionally notochord is seen. We conclude that in intact embryos, wg acts in concert with other factors to cause axis duplication. Immunolocalisation studies in embryos indicate that wg protein remains localised to the blastomeres synthesizing it and has a patchy, often perinuclear distribution within these cells, although some gets to the surface. In oocytes, the pool of wg protein is entirely intracellular and relatively unstable. When the polyanion suramin is added, most of the intracellular material is recovered in the external medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

Producing Cells Retain and Recycle Wingless in Drosophila Embryos

There is considerable interest in the mechanisms that drive and control the spread of morphogens in developing animals. Although much attention is given to events occurring after release from expressing cells, release itself could be an important modulator of range. Indeed, a dedicated protein, Dispatched, is needed to release Hedgehog from the surface of expressing cells. We find that, in Dros...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos

Pattern formation in developing animals requires that cells exchange signals mediated by secreted proteins. How these signals spread is still unclear. It is generally assumed that they reach their target site either by diffusion or active transport (reviewed in [1] [2]). Here, we report an alternative mode of transport for Wingless (Wg), a member of the Wnt family of signaling molecules. In emb...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 115 1  شماره 

صفحات  -

تاریخ انتشار 1992